Clinico-microbiological profile of sepsis with carbapenem-resistant Gram-negative isolates among patients presenting to a large tertiary care hospital in South Kerala
Aneesh Chacko, Aneeta Mary Jacob, Mathew Pulicken, Philip Mathew, Jijo Paul
Citation Information :
Chacko A, Jacob AM, Pulicken M, Mathew P, Paul J. Clinico-microbiological profile of sepsis with carbapenem-resistant Gram-negative isolates among patients presenting to a large tertiary care hospital in South Kerala. 2020; 22 (2):76-81.
BACKGROUND AND OBJECTIVES: Increasing antibiotic resistance, particularly among carbapenems, has made the management of sepsis very challenging. Early and aggressive use of appropriate antimicrobials is essential in improving the clinical outcome of these patients. The aim of this study was to find the various risk factors leading to sepsis with carbapenem-resistant organisms (CRO) and also to analyse the various clinical outcomes among sepsis due to CRO.
MATERIALS AND METHODS: Blood cultures were processed from patients who presented with signs and symptoms of sepsis. Analysis for predisposing factors and clinical outcome was done for those patients who grew CRO in both blood cultures. For calculation of significance, the same factors were also studied in an equal number of patients who presented with sepsis due to carbapenem-sensitive organisms.
RESULTS: Blood cultures were received from a total of 3885 patients in one year, of which 7.6% grew Gram-negative bacilli. Resistance to carbapenems was seen in 17.9% of isolates. The significant risk factors for sepsis with CRO in the present study were chronic liver disease, increased duration of hospital stay and exposure to antibiotics. Carbapenem-resistant sepsis was associated with increased mortality. This may be related to the delay in initiating definitive therapy after the onset of sepsis.
INTERPRETATION AND CONCLUSION: Colistin is the drug of choice for carbapenem-resistant sepsis. Being a reserve drug, we recommend Colistin to be restrictively used as an empiric therapy only in those patients who developed sepsis after hospital stay, who had prolonged antibiotic exposure as well as in patients with chronic liver disease.
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801-10.
Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991;115:457-69.
Sarin K, Vadivelan M, Bammigatti C. Antimicrobial therapy in the intensive care unit. Indian J Clin Pract 2013;23:601-9.
Micek ST, Welch EC, Khan J, Pervez M, Doherty JA, Reichley RM, et al. Resistance to empiric antimicrobial treatment predicts outcome in severe sepsis associated with gram-negative bacteremia. J Hosp Med 2011;6:405-10.
Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol Med 2012;18:263-72.
Codjoe F, Donkor E. Carbapenem resistance: A review. Med Sci 2018;6:1.
Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med 2018;44:925-8.
Linden PK, Kusne S, Coley K, Fontes P, Kramer DJ, Paterson D. Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. Clin Infect Dis 2003;37:e154-60.
Winn WC, Allen SD, Janda WM, Koneman EW, Procop G, Schreckenberger PC, et al. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. 6th ed. USA: Lippincott Williams & Wilkins; 2006.
CLSI. Performance Standards for Antimicrobial Susceptibility Testsing. 28th ed. CLSI Supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
EUCAST Expert Rules in Antimicrobial Susceptibility Testing. Version 2.0. Available from: http://www.eucast.org. [Last accessed on 2011 Oct 29].
Viscoli C. Bloodstream infections: The peak of the iceberg. Virulence 2016;7:248-51.
Sabino S, Soares S, Ramos F, Moretti M, Zavascki AP, Rigatto MH. A cohort study of the impact of carbapenem-resistant Enterobacteriaceae infections on mortality of patients presenting with sepsis. mSphere 2019;4:e00052-19.
Bhattacharya PK, Saurabh A, Navya G, Nimita D. Retrospective analysis of outcomes in patients growing Gram negative multidrug resistant (MDR) isolates from a tertiary care centre. Int J Sci Res 2019;7:37-40.
Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother 2019;63:e00355-19.
Mohan B, Prasad A, Kaur H, Hallur V, Gautam N, Taneja N. Fecal carriage of carbapenem-resistant Enterobacteriaceae and risk factor analysis in hospitalised patients: A single centre study from India. Indian J Med Microbiol 2017;35:555-62.
Richter SE, Miller L, Needleman J, Uslan DZ, Bell D, Watson K, et al. Risk factors for development of carbapenem resistance among Gram-negative rods. Open Forum Infect Dis 2019;6:ofz027.
Tran DM, Larsson M, Olson L, Hoang NTB, Le NK, Khu DTK, et al. High prevalence of colonisation with carbapenem-resistant Enterobacteriaceae among patients admitted to Vietnamese hospitals: Risk factors and burden of disease. J Infect 2019;79:115-22.
Kalam K, Qamar F, Kumar S, Ali S, Baqi S. Risk factors for carbapenem resistant bacteraemia and mortality due to Gram negative bacteraemia in a developing country. J Pak Med Assoc 2014;64:530-6.
Meng X, Liu S, Duan J, Huang X, Zhou P, Xiong X, et al. Risk factors and medical costs for healthcare-associated carbapenem-resistant Escherichia coli infection among hospitalized patients in a Chinese teaching hospital. BMC Infect Dis 2017;17:82.
Chang HJ, Hsu PC, Yang CC, Kuo AJ, Chia JH, Wu TL, et al. Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: A matched case-control study. J Microbiol Immunol Infect 2011;44:125-30.
Righi E. Management of bacterial and fungal infections in end stage liver disease and liver transplantation: Current options and future directions. World J Gastroenterol 2018;24:4311-29.
Zhang Y, Guo LY, Song WQ, Wang Y, Dong F, Liu G. Risk factors for carbapenem-resistant K. Pneumoniae bloodstream infection and predictors of mortality in Chinese paediatric patients. BMC Infect Dis 2018;18:248.
Zhang D, Cui K, Wang T, Shan Y, Dong H, Feng W, et al. Risk factors for carbapenem-resistant Pseudomonas aeruginosa infection or colonization in a Chinese teaching hospital. J Infect Dev Ctries 2018;12:642-8.
Chiotos K, Tamma PD, Flett KB, Naumann M, Karandikar MV, Bilker WB, et al. Multicenter study of the risk factors for colonization or infection with carbapenem-resistant Enterobacteriaceae in children. Antimicrob Agents Chemother 2017;61:e01440-17.
Bharadwaj R, Bal A, Kapila K, Mave V, Gupta A. Blood stream infections. Biomed Res Int 2014;2014:515273.
Timsit JF, Soubirou JF, Voiriot G, Chemam S, Neuville M, Mourvillier B, et al. Treatment of bloodstream infections in ICUs. BMC Infect Dis 2014;14:489.
Seboxa T, Amogne W, Abebe W, Tsegaye T, Azazh A, Hailu W, et al. High mortality from blood stream infection in Addis Ababa, Ethiopia, is due to antimicrobial resistance. PLoS One 2015;10:e0144944.
Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: Review of the literature and emergency department management guidelines. Ann Emerg Med 2006;48:28-54.
Teo J, Cai Y, Tang S, Lee W, Tan TY, Tan TT, et al. Risk factors, molecular epidemiology and outcomes of ertapenem-resistant, carbapenem-susceptible Enterobacteriaceae: A case-case-control study. PLoS One 2012;7:e34254.