Journal of The Academy of Clinical Microbiologists

Register      Login

VOLUME 26 , ISSUE 1 ( January-June, 2024 ) > List of Articles

REVIEW ARTICLE

Breaking Barriers in Candida auris Genomics: Analysis Tools for Whole Genome Sequencing Amid Database Scarcity

Naina Gupta, Pratiksha Chheda, Shashikala Shivaprakash, Tavisha Dama

Keywords : Candida auris, Multidrug resistance, Whole genome sequencing

Citation Information : Gupta N, Chheda P, Shivaprakash S, Dama T. Breaking Barriers in Candida auris Genomics: Analysis Tools for Whole Genome Sequencing Amid Database Scarcity. 2024; 26 (1):13-22.

DOI: 10.5005/jacm-11020-0005

License: CC BY-NC 4.0

Published Online: 26-07-2024

Copyright Statement:  Copyright © 2024; The Author(s).


Abstract

Candida auris, a multidrug-resistant yeast, is an opportunistic pathogen that is capable of causing invasive infections, particularly in hospitalized patients with compromised immune systems. Whole genome sequencing (WGS) analysis provides valuable information related to the presence of C. auris clades and antifungal drug resistance mutations, and the data can be used to study transmission patterns in healthcare settings. However, analyzing data can be challenging due to its massive size and complexity. The data generated from WGS require advanced computational infrastructure and expertise in bioinformatics to handle tasks such as data preprocessing, quality control, read alignment, and variant calling. The purpose of this review is to provide a comprehensive overview of the computational tools and software used for WGS data analysis of C. auris. In this review, we have summarized all the tools, software, and databases used so far to the best of our knowledge for analysis of C. auris WGS data by several scientists.


PDF Share
  1. Forsberg K, Woodworth K, Walters M, et al. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med Mycol 2019;57(1):1–12. DOI: 10.1093/mmy/myy054
  2. Kordalewska M, Perlin DS. Identification of drug resistant Candida auris. Front Microbiol 2019;10:1918. DOI: 10.3389/fmicb.2019.01918
  3. Mirabet V, Salvador C, Valentín A, et al. Risk assessment of arterial allograft contamination from tissue donors colonized by Candida auris. J Hosp Infect 2021;112:49–53. DOI: 10.1016/j.jhin.2021.03.003
  4. Chakrabarti A, Sood P. On the emergence, spread and resistance of Candida auris: host, pathogen and environmental tipping points. J Med Microbiol 2021;70(3):001318. DOI: 10.1099/jmm.0.001318
  5. Escandón P, Chow NA, Caceres DH, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis 2019;68(1):15–21. DOI: 10.1093/cid/ciy411
  6. Piedrahita CT, Cadnum JL, Jencson AL, et al. Environmental surfaces in healthcare facilities are a potential source for transmission of Candida auris and other Candida species. Infect Control Hosp Epidemiol 2017;38(9):1107–1109. DOI: 10.1017/ice.2017.127
  7. Eyre DW, Sheppard AE, Madder H, et al. A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 2018;379(14):1322–1331. DOI: 10.1056/NEJMoa1714373
  8. Du H, Bing J, Hu T, et al. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog 2020;16(10):e1008921. DOI: 10.1371/journal.ppat.1008921
  9. Villanueva-Lozano H, Treviño-Rangel RdJ, González GM, et al. Outbreak of Candida auris infection in a COVID-19 hospital in Mexico. Clin Microbiol Infect 2021;27(5):813. DOI: 10.1016/j.cmi.2020.12.030
  10. Allaw F, Kara Zahreddine N, Ibrahim A, et al. First Candida auris outbreak during a COVID-19 pandemic in a tertiary-care center in Lebanon. Pathogens 2021;10(2):157. DOI: 10.3390/pathogens10020157
  11. Watkins RR, Gowen R, Lionakis MS, et al. Update on the pathogenesis, virulence, and treatment of Candida auris. Pathog Immun 2022;7(2):46–65. DOI: 10.20411/pai.v7i2.535
  12. Vallabhaneni S, Kallen A, Tsay S, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013–August 2016. MMWR Morb Mortal Wkly Rep 2016;65(44):1234–1237. DOI: 10.1111/ajt.14121
  13. Tsay S, Welsh RM, Adams EH, et al. Notes from the field: ongoing transmission of Candida auris in health care facilities—United States, June 2016–May 2017. MMWR Morb Mortal Wkly Rep 2017;66(19):514–515. DOI: 10.15585/mmwr.mm6619a7
  14. Adams E, Quinn M, Tsay S, et al. Candida auris in healthcare facilities, New York, USA, 2013–2017. Emerg Infect Dis 2018;24(10):1816–1824. DOI: 10.3201/eid2410.180649
  15. Prestel C, Anderson E, Forsberg K, et al. Candida auris outbreak in a COVID-19 specialty care unit—Florida, July–August 2020. MMWR Morb Mortal Wkly Rep 2021;70(2):56–57. DOI: 10.15585/mmwr.mm7002e3
  16. Eckbo EJ, Wong T, Bharat A, et al. First reported outbreak of the emerging pathogen Candida auris in Canada. Am J Infect Control 2021;49(6):804–807. DOI: 10.1016/j.ajic.2021.01.013
  17. Schelenz S, Hagen F, Rhodes JL, et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 2016;5:35. DOI: 10.1186/s13756-016-0132-5
  18. Rhodes J, Abdolrasouli A, Farrer RA, et al. Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen Candida auris. Emerg Microbes Infect 2018;7(1):1–12. DOI: 10.1038/s41426-018-0045-x
  19. Ruiz-Gaitán A, Moret AM, Tasias-Pitarch M, et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018;61(7):498–505. DOI: 10.1111/myc.12781
  20. Mulet Bayona JV, Tormo Palop N, Salvador García C, et al. Characteristics and management of candidaemia episodes in an established Candida auris outbreak. Antibiotics 2020;9(9):558. DOI: 10.3390/antibiotics9090558
  21. Mathur P, Hasan F, Singh PK, et al. Five-year profile of candidaemia at an Indian trauma centre: High rates of Candida auris blood stream infections. Mycoses 2018;61(9):674–680. DOI: 10.1111/myc.12790
  22. Farooqi JQ, Soomro AS, Baig MA, et al. Outbreak investigation of Candida auris at a tertiary care hospital in Karachi, Pakistan. J InfectPrev 2020;21(5):189–195. DOI: 10.1177/1757177420935639
  23. Barantsevich NE, Vetokhina AV, Ayushinova NI, et al. Candida auris bloodstream infections in Russia. Antibiotics 2020;9(9):557. DOI: 10.3390/antibiotics9090557
  24. Alshamrani MM, El-Saed A, Mohammed A, et al. Management of Candida auris outbreak in a tertiary-care setting in Saudi Arabia. Infect Control Hosp Epidemiol. 2021;42(2):149–155. DOI: 10.1017/ice.2020.414
  25. Al Maani A, Paul H, Al-Rashdi A, et al. Ongoing challenges with healthcare-associated Candida auris outbreaks in Oman. J Fungi (Basel) 2019;5(4):101. DOI: 10.3390/jof5040101
  26. Mohsin J, Weerakoon S, Ahmed S, et al. A cluster of Candida auris blood stream infections in a tertiary care hospital in Oman from 2016 to 2019. Antibiotics 2020;9(10):638. DOI: 10.3390/antibiotics9100638
  27. Alfouzan W, Ahmad S, Dhar R, et al. Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait. J Fungi (Basel) 2020;6(4):307. DOI: 10.3390/jof6040307
  28. Adam RD, Revathi G, Okinda N, et al. Analysis of Candida auris fungemia at a single facility in Kenya. Int J Infect Dis. 2019;85:182–187. DOI: 10.1016/j.ijid.2019.06.001
  29. Govender NP, Magobo RE, Mpembe R, et al. Candida auris in South Africa, 2012–2016. Emerg Infect Dis 2018;24(11):2036–2040. DOI: 10.3201/eid2411.180368
  30. Armstrong PA, Rivera SM, Escandon P, et al. Hospital-associated multicenter outbreak of emerging fungus Candida auris, colombia, 2016. Emerg Infect Dis. 2019;25(7):1339–1346. DOI: 10.3201/eid2507.180491
  31. Yadav A, Singh A, Wang Y, et al. Colonisation and transmission dynamics of Candida auris among chronic respiratory diseases patients hospitalised in a chest hospital, Delhi, India: A comparative analysis of whole genome sequencing and microsatellite typing. J Fungi (Basel) 2021;7(2):81. DOI: 10.3390/jof7020081
  32. Chow NA, Muñoz JF, Gade L, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. mBio 2020;11(2):e03364-19. DOI: 10.1128/mBio.03364-19
  33. Sanglard D. Finding the needle in a haystack: mapping antifungal drug resistance in fungal pathogen by genomic approaches. PLoS Pathog 2019;15(1):e1007478. DOI: 10.1371/journal.ppat.1007478
  34. Oladele R, Uwanibe JN, Olawoye IB, et al. Emergence and genomic characterization of multidrug resistant Candida auris in Nigeria, West Africa. J Fungi (Basel) 2022;8(8):787. DOI: 10.3390/jof8080787
  35. Todd RT, Wikoff TD, Forche A, et al. Genome plasticity in Candida albicans is driven by long repeat sequences. Elife 2019;8:e45954. DOI: 10.7554/eLife.45954
  36. Kumaraswamy M, Coady A, Szubin R, et al. Comprehensive whole genome sequencing with hybrid assembly of multi-drug resistant Candida albicans isolate causing cerebral abscess. Curr Res Microb Sci 2023;4:100180. DOI: 10.1016/j.crmicr.2023.100180
  37. Fan S, Zhan P, Bing J, et al. A biological and genomic comparison of a drug-resistant and a drug-susceptible strain of Candida auris isolated from Beijing, China. Virulence 2021;12(1):1388–1399. DOI: 10.1080/21505594.2021.1928410
  38. Lockhart SR, Etienne KA, Vallabhaneni S, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis 2017;64(2):134–140. DOI: 10.1093/cid/ciw691
  39. Muñoz JF, Welsh RM, Shea T, et al. Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris. Genetics 2021;218(1):iyab029. DOI: 10.1093/genetics/iyab029
  40. Rizzo M, Soisangwan N, Vega-Estevez S, et al. Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process. PLoS Genet 2022;18(12):e1010576. DOI: 10.1371/journal.pgen.1010576
  41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15):2114–2120. DOI: 10.1093/bioinformatics/btu170
  42. Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017;27(5):722–736. DOI: 10.1101/gr.215087.116
  43. Skrzypek MS, Binkley J, Binkley G, et al. The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 2017;45(D1):D592–D596. DOI: 10.1093/nar/gkw924
  44. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19(5):455–477. DOI: 10.1089/cmb.2012.0021
  45. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18(5):821–829. DOI: 10.1101/gr.074492.107
  46. Muñoz JF, Gade L, Chow NA, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 2018;9(1):5346. DOI: 10.1038/s41467-018-07779-6
  47. Carolus H, Pierson S, Muñoz JF, et al. Genome-wide analysis of experimentally evolved Candida auris reveals multiple novel mechanisms of multidrug resistance. mBio 2021;12(2):e03333-20. DOI: 10.1128/mBio.03333-20
  48. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014;9(11):e112963. DOI: 10.1371/journal.pone.0112963
  49. Chatterjee S, Alampalli SV, Nageshan RK, et al. Draft genome of a commonly misdiagnosed multidrug resistant pathogen Candida auris. BMC Genomics 2015;16(1):686. DOI: 10.1186/s12864-015-1863-z
  50. Hirakawa MP, Martinez DA, Sakthikumar S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res 2015;25(3):413–425. DOI: 10.1101/gr.174623.114
  51. Reslan L, Araj GF, Finianos M, et al. Molecular characterization of Candida auris isolates at a major tertiary care center in Lebanon. Front Microbiol 2021;12:770635. DOI: 10.3389/fmicb.2021.770635
  52. Sharma C, Kumar N, Pandey R, et al. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect 2016;13:77–82. DOI: 10.1016/j.nmni.2016.07.003
  53. Wilton R, Szalay AS. Performance optimization in DNA short-read alignment. Bioinformatics 2022;38(8):2081–2087. DOI: 10.1093/bioinformatics/btac066
  54. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357–359. DOI: 10.1038/nmeth.1923
  55. Kurtz S, Phillippy A, Delcher AL, et al. Versatile and open software for comparing large genomes. Genome Biol 2004;5(2):R12. DOI: 10.1186/gb-2004-5-2-r12
  56. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011;27(21):2987–2993. DOI: 10.1093/bioinformatics/btr509
  57. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29(1):24–26. DOI: 10.1038/nbt.1754
  58. Stanke M, Diekhans M, Baertsch R, et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 2008;24(5):637–644. DOI: 10.1093/bioinformatics/btn013
  59. Hoff KJ, Lange S, Lomsadze A, et al. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 2016;32(5):767–769. DOI: 10.1093/bioinformatics/btv661
  60. Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 2014;42(15):e119. DOI: 10.1093/nar/gku557
  61. Tatusov RL, Galperin MY, Natale DA, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000;28(1):33–36. DOI: 10.1093/nar/28.1.33
  62. Kean R, Delaney C, Sherry L, et al. Transcriptome assembly and profiling of Candida auris reveals novel insights into biofilm-mediated resistance. mSphere 2018;3(4):e00334-18. DOI: 10.1128/mSphere.00334-18
  63. Simão FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015;31(19):3210–3212. DOI: 10.1093/bioinformatics/btv351
  64. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13(9):2178–2189. DOI: 10.1101/gr.1224503
  65. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20(9):1297–1303. DIO: 10.1101/gr.107524.110
  66. Clevenger J, Chavarro C, Pearl SA, et al. Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Mol Plant 2015;8(6):831–846. DOI: 10.1016/j.molp.2015.02.002
  67. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22(3):568–576. DOI: 10.1101/gr.129684.111
  68. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6(2):80–92. DOI: 10.4161/fly.19695
  69. Cingolani P, Patel VM, Coon M, et al. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet 2012;3:35. DOI: 10.3389/fgene.2012.00035
  70. Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics 2011;27(15):2156–2158. DOI: 10.1093/bioinformatics/btr330
  71. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997;25(5):955–964. DOI: 10.1093/nar/25.5.955
  72. Lagesen K, Hallin P, Rødland EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35(9):3100–3108. DOI: 10.1093/nar/gkm160
  73. Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725–2729. DOI: 10.1093/molbev/mst197
  74. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22(21):2688–2690. DOI: 10.1093/bioinformatics/btl446
  75. Drummond AJ, Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007;7:214. DOI: 10.1186/1471-2148-7-214
  76. Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol BiolEvol 2020;37(5):1530–1534. DOI: 10.1093/molbev/msaa015
  77. Skrzypek MS, Binkley J, Sherlock G. Using the Candida Genome Database. Methods Mol Biol 2018;1757:31–47. DOI: 10.1007/978-1-4939-7737-6_3
  78. Kumar A, Prakash A, Singh A, et al. Candida haemulonii species complex: an emerging species in India and its genetic diversity assessed with multilocus sequence and amplified fragment-length polymorphism analyses. Emerg Microbes Infect 2016;5(5):e49. DOI: 10.1038/emi.2016.49
  79. Khalaf RA, Fattouh N, Medvecky M, et al. Whole genome sequencing of a clinical drug resistant Candida albicans isolate reveals known and novel mutations in genes involved in resistance acquisition mechanisms. J Med Microbiol 2021;70(4):001351. DOI: 10.1099/jmm.0.001351
  80. Stajich JE, Harris T, Brunk BP, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 2012;40(Database issue):D675–D681. DOI: 10.1093/nar/gkr918
  81. Nash A, Sewell T, Farrer RA, et al. MARDy: Mycology Antifungal Resistance Database. Bioinformatics 2018;34(18):3233–3234. DOI: 10.1093/bioinformatics/bty321
  82. Grigoriev IV, Nikitin R, Haridas S, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 2014;42(Database issue):D699–D704. DOI: 10.1093/nar/gkt1183
  83. Jacobs SE, Jacobs JL, Dennis EK, et al. Candida auris pan-drug-resistant to four classes of antifungal agents. Antimicrob Agents Chemother 2022;66(7):e0005322. DOI: 10.1128/aac.00053-22
  84. Yates AD, Allen J, Amode RM, et al. Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res 2022;50(D1):D996–D1003. DOI: 10.1093/nar/gkab1007
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.