Journal of The Academy of Clinical Microbiologists

Register      Login

VOLUME 24 , ISSUE S1 ( December, 2022 ) > List of Articles

REVIEW ARTICLE

Role of gene sequencing for the diagnosis, tracking and prevention of fungal infections

Rajendra Gudisa, Shivaprakash M Rudramurthy

Keywords : Diagnostics, gene sequencing, mycology

Citation Information : Gudisa R, Rudramurthy SM. Role of gene sequencing for the diagnosis, tracking and prevention of fungal infections. 2022; 24 (S1):15-24.

DOI: 10.4103/jacm.jacm_16_22

License: CC BY-NC 4.0

Published Online: 11-11-2022

Copyright Statement:  Copyright © 2022; Wolters Kluwer India Pvt. Ltd.


Abstract

The precise diagnosis of fungi is utmost important owing to the morbidity and mortality caused especially in various susceptible hosts. Among the diagnostic methods though the phenotypic methods are being routinely used among laboratories but they have inherent hindrances of being tedious, time-consuming and entail experience. These roadblocks acting as a major obstacle in precise identification of fungi, underlined the requisite for implementation of genotypic methods for routine diagnosis. Since sequencing forms the cornerstone of molecular identification of fungi, many sophisticated modalities and platforms have been developed. The role of fungal sequencing isn't limited merely to the identification of known fungal species in routine laboratory, but is of utmost significance in deciphering the emerging pathogenic and saprophytic fungal species that have the potential to infect humans. It was with the use of these sequencing techniques that the complex fungal nomenclature based on presence or absence of sexual form of the fungus, could be simplified and unified effort led to adoption of ‘one-fungus--one-name’ rule. Panfungal PCR targeting 28S rRNA when used in conjunction with sequencing for detection of etiological agents in patients with invasive fungal disease (IFD) from deep tissue samples has shown encouraging results. Though many sequencing modalities are available, an ideal diagnostic platform is yet awaited to meet the diversity of fungal infections in initial stages itself. The early diagnosis enables the clinician to administer appropriate therapy as and when required. The same helps in delimiting the undesired affects of antifungals as well as indirectly help in antimicrobial stewardship as well.


PDF Share
  1. O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 2005;71:5544-50.
  2. Hawksworth DL, Lücking R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol Spectr 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0052-2016.
  3. Pontón J, Rüchel R, Clemons KV, Coleman DC, Grillot R, Guarro J, et al. Emerging pathogens. Med Mycol 2000;38 Suppl 1:225-36.
  4. Kozel TR, Wickes B. Fungal diagnostics. Cold Spring Harb Perspect Med 2014;4:a019299. doi: 10.1101/cshperspect.a019299.
  5. de Hoog G, Guarro J, Gené J, Ahmed S, Al-Hatmi A, Figueras M, et al., editors. The Atlas of Clinical Fungi. 4th ed. Utrecht, The Netherlands: Centraalbureau Voor Schimmelcultures; 2020.
  6. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Available from: https://www.researchgate.net/publication/262687766_Amplification_and_Direct_Sequencing_of_Fungal_Ribosomal_RNA_Genes_for_Phylogenetics. [Last accessed on 2022 Apr 04].
  7. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, et al. The amsterdam declaration on fungal nomenclature. IMA Fungus 2011;2:105-12.
  8. Seifert KA, Wingfield BD, Wingfield MJ. A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs. Can J Bot 1995;73:760-7.
  9. Xu J. Fungal DNA barcoding. Genome 2016;59:913-32.
  10. Seifert KA. Progress towards DNA barcoding of fungi. Mol Ecol Resour 2009;9 Suppl s1:83-9.
  11. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 2012;109:6241-6.
  12. Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: A primer for the natural products research community. J Nat Prod 2017;80:756-70.
  13. Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, et al. DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 2011;191:288-300.
  14. Dentinger BT, Didukh MY, Moncalvo JM. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina). PLoS One 2011;6:e25081.
  15. Duarte S, Seena S, Bärlocher F, Cássio F, Pascoal C. Preliminary insights into the phylogeography of six aquatic hyphomycete species. PLoS One 2012;7:e45289.
  16. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015;35:242-63.
  17. Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo JM, et al. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 2007;104:3901-6.
  18. Samson RA, Pitt JI. Integration of modern taxonomic methods for penicillium and Aspergillus classification. Available from: https://www.routledge.com/Integration-of-Modern-Taxonomic-Methods-For-Penicillium-and-Aspergillus/Samson-Pitt/p/book/9780367397968. [Last accessedon 2022 Apr 04].
  19. Al-Hatmi AM, Hagen F, Menken SB, Meis JF, de Hoog GS. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015. Emerg Microbes Infect 2016;5:e124.
  20. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CH, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 2014;78:141-73.
  21. Ryberg M, Nilsson RH, Kristiansson E, Töpel M, Jacobsson S, Larsson E. Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota). BMC Evol Biol 2008;8:50.
  22. Hillis DM, Dixon MT. Ribosomal DNA: Molecular evolution and phylogenetic inference. Q Rev Biol 1991;66:411-53.
  23. Adams RI, Amend AS, Taylor JW, Bruns TD. A unique signal distorts the perception of species richness and composition in high-throughput sequencing surveys of microbial communities: A case study of fungi in indoor dust. Microb Ecol 2013;66:735-41.
  24. Amend AS, Seifert KA, Samson R, Bruns TD. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 2010;107:13748-53.
  25. Aguileta G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, et al. Assessing the performance of single-copy genes for recovering robust phylogenies. Syst Biol 2008;57:613-27.
  26. Wagner K, Springer B, Pires VP, Keller PM. Molecular detection of fungal pathogens in clinical specimens by 18S rDNA high-throughput screening in comparison to ITS PCR and culture. Sci Rep 2018;8:6964.
  27. Sanmiguel P. Next-generation sequencing and potential applications in fungal genomics. Methods Mol Biol 2011;722:51-60. doi: 10.1007/978-1-61779-040-9_4.
  28. Hebert PD, Braukmann TW, Prosser SW, Ratnasingham S, deWaard JR, Ivanova NV, et al. A sequel to sanger: Amplicon sequencing that scales. BMC Genomics 2018;19:219.
  29. Mardis ER. A decade's perspective on DNA sequencing technology. Nature 2011;470:198-203.
  30. Zoll J, Snelders E, Verweij PE, Melchers WJ. Next-generation sequencing in the mycology lab. Curr Fungal Infect Rep 2016;10:37-42.
  31. Orgiazzi A, Bianciotto V, Bonfante P, Daghino S, Ghignone S, Lazzari A, et al. 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 2013;5:73-98.
  32. Cottier F, Srinivasan KG, Yurieva M, Liao W, Poidinger M, Zolezzi F, et al. Advantages of meta-total RNA sequencing (MeTRS) over shotgun metagenomics and amplicon-based sequencing in the profiling of complex microbial communities. NPJ Biofilms Microbiomes 2018;4:2.
  33. D'Andreano S, Cuscó A, Francino O. Rapid and real-time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biol Methods Protoc 2021;6:bpaa026.
  34. International Nucleotide Sequence Database Collaboration. Available from: https://www.ncbi.nlm.nih.gov/genbank/collab/. [Last accessed on 2022 Apr 04].
  35. Ellingham O, David J, Culham A. Enhancing identification accuracy for powdery mildews using previously underexploited DNA loci. Mycologia 2019;111:798-812.
  36. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U. Taxonomic reliability of DNA sequences in public sequence databases: A fungal perspective. PLoS One 2006;1:e59.
  37. Barcoding of Medical Fungi: ISHAM. Available from: https://www.isham.org/working-groups/barcoding-medical-fungi. [Last accessed on 2022 Apr 04].
  38. Fungal PCR Initiative (FPCRI): ISHAM. Available from https://www.isham.org/working-groups/european-aspergillus-pcr-initiative-eapcri [Last accessed 2022 Apr 04].
  39. Irinyi L, Lackner M, de Hoog GS, Meyer W. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol 2016;120:125-36.
  40. Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, et al. UNITE: A database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 2005;166:1063-8.
  41. Bonants P, Edema M, Robert V. Q-bank, a database with information for identification of plant quarantine plant pest and diseases. EPPO Bull 20131;43:211-5. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/epp. 12030. [Last accessed on 2022 Apr 04].
  42. NCBI RefSeq Targeted Loci Project. Available from: https://www.ncbi.nlm.nih.gov/refseq/targetedloci/. [Last accessed on 2022 Apr 04].
  43. Fusarium-ID. Available From: http://isolate.fusariumdb.org/guide.php. [Last accessed on 2022 Apr 04].
  44. Home. Available from: https://www.trichokey.com/. [Last accessed on 2022 Apr 04].
  45. CBS-KNAW, Fungal Biodiversity Centre | Biodiversity Informatics Towards Horizon 2020. Available from: https://h2020.myspecies.info/content/cbs-knaw-fungal-biodiversity-centre. [Last accessed on 2022 Apr 04].
  46. Kjærbülling I, Vesth T, Frisvad JC, Nybo JL, Theobald S, Kildgaard S, et al. A comparative genomics study of 23 Aspergillus species from section flavi. Nat Commun 2020;11:1106.
  47. Lebreton A, Corre E, Jany JL, Brillet-Guéguen L, Pèrez-Arques C, Garre V, et al. Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics 2020;21:135.
  48. Soare AY, Watkins TN, Bruno VM. Understanding Mucormycoses in the age of “omics”. Front Genet 2020;11:699.
  49. Welsh RM, Misas E, Forsberg K, Lyman M, Chow NA. Candida auris whole-genome sequence benchmark dataset for phylogenomic pipelines. J Fungi (Basel) 2021;7:214.
  50. Mixão V, Hansen AP, Saus E, Boekhout T, Lass-Florl C, Gabaldón T. Whole-genome sequencing of the opportunistic yeast pathogen Candida inconspicua uncovers its hybrid origin. Front Genet 2019;10:383.
  51. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015;78:16-48.
  52. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 2015;81:85-147.
  53. Morales-López SE, Garcia-Effron G. Infections due to rare Cryptococcus species. A literature review. J Fungi (Basel) 2021;7:279.
  54. Larkin PM, Lawson KL, Contreras DA, Le CQ, Trejo M, Realegeno S, et al. Amplicon-based next-generation sequencing for detection of fungi in formalin-fixed, paraffin-embedded tissues: Correlation with histopathology and clinical applications. J Mol Diagn 2020;22:1287-93.
  55. Gandhi J, Jayasudha R, Naik P, Sharma S, Dave VP, Joseph J. Targeted High-Throughput Sequencing Identifies Predominantly Fungal Pathogens in Patients with Clinically Infectious, Culture-Negative Endophthalmitis in South India. Microorganisms 2019;7:411. doi: 10.3390/microorganisms7100411.
  56. Ala-Houhala M, Koukila-Kähkölä P, Antikainen J, Valve J, Kirveskari J, Anttila VJ. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: A retrospective observational study. Clin Microbiol Infect 2018;24:301-5.
  57. Lass-Flörl C, Mutschlechner W, Aigner M, Grif K, Marth C, Girschikofsky M, et al. Utility of PCR in diagnosis of invasive fungal infections: Real-life data from a multicenter study. J Clin Microbiol 2013;51:863-8.
  58. Trubiano JA, Dennison AM, Morrissey CO, Chua KY, Halliday CL, Chen SC, et al. Clinical utility of panfungal polymerase chain reaction for the diagnosis of invasive fungal disease: A single center experience. Med Mycol 2016;54:138-46.
  59. Lieberman JA, Bryan A, Mays JA, Stephens K, Kurosawa K, Mathias PC, et al. High clinical impact of broad-range fungal PCR in suspected fungal sinusitis. J Clin Microbiol 2021;59:e0095521.
  60. Lu XJ, Liu KY, Zhu YS, Cui C, Poh CF. Using ddPCR to assess the DNA yield of FFPE samples. Biomol Detect Quantif 2018;16:5-11.
  61. Amemiya K, Hirotsu Y, Oyama T, Omata M. Relationship between formalin reagent and success rate of targeted sequencing analysis using formalin fixed paraffin embedded tissues. Clin Chim Acta 2019;488:129-34.
  62. Halliday CL, Sorrell TC, Chen SC. Detection of multiple fungal species in blood samples by real-time PCR: An interpretative challenge. J Clin Microbiol 2014;52:3515-6.
  63. White PL, Shetty A, Barnes RA. Detection of seven Candida species using the light-cycler system. J Med Microbiol 2003;52:229-38.
  64. Pfeiffer CD, Samsa GP, Schell WA, Reller LB, Perfect JR, Alexander BD. Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol 2011;49:2879-83.
  65. Monday LM, Parraga Acosta T, Alangaden G. T2Candida for the diagnosis and management of invasive Candida infections. J Fungi (Basel) 2021;7:178.
  66. Carvalho-Pereira J, Fernandes F, Araújo R, Springer J, Loeffler J, Buitrago MJ, et al. Multiplex PCR based strategy for detection of fungal pathogen DNA in patients with suspected invasive fungal infections. J Fungi (Basel) 2020;6:308.
  67. Kidd SE, Chen SC, Meyer W, Halliday CL. A new age in molecular diagnostics for invasive fungal disease: Are we ready? Front Microbiol 2019;10:2903.
  68. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, et al. International society of human and animal mycology (ISHAM)-ITS reference DNA barcoding database – The quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 2015;53:313-37.
  69. White PL, Bretagne S, Klingspor L, Melchers WJ, McCulloch E, Schulz B, et al. Aspergillus PCR: One step closer to standardization. J Clin Microbiol 2010;48:1231-40.
  70. Sun W, Wang K, Gao W, Su X, Qian Q, Lu X, et al. Evaluation of PCR on bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis: A bivariate metaanalysis and systematic review. PLoS One 2011;6:e28467.
  71. Rath PM, Steinmann J. Overview of commercially available PCR assays for the detection of Aspergillus spp. DNA in patient samples. Front Microbiol 2018;9:740.
  72. Cruciani M, Mengoli C, Barnes R, Donnelly JP, Loeffler J, Jones BL, et al. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev 2019;9:CD009551.
  73. Donnelly JP, Chen SC, Kauffman CA, Steinbach WJ, Baddley JW, Verweij PE, et al. Revision and update of the consensus definitions of invasive fungal disease from the European organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin Infect Dis 2020;71:1367-76.
  74. Boch T, Reinwald M, Spiess B, Liebregts T, Schellongowski P, Meybohm P, et al. Detection of invasive pulmonary aspergillosis in critically ill patients by combined use of conventional culture, galactomannan, 1-3-beta-D-glucan and Aspergillus specific nested polymerase chain reaction in a prospective pilot study. J Crit Care 2018;47:198-203.
  75. Blennow O, Remberger M, Klingspor L, Omazic B, Fransson K, Ljungman P, et al. Randomized PCR-based therapy and risk factors for invasive fungal infection following reduced-intensity conditioning and hematopoietic SCT. Bone Marrow Transplant 2010;45:1710-8.
  76. Imbert S, Meyer I, Palous M, Brossas JY, Uzunov M, Touafek F, et al. Aspergillus PCR in bronchoalveolar lavage fluid for the diagnosis and prognosis of aspergillosis in patients with hematological and non-hematological conditions. Front Microbiol 2018;9:1877.
  77. Boch T, Spiess B, Heinz W, Cornely OA, Schwerdtfeger R, Hahn J, et al. Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis. Mycoses 2019;62:1035-42.
  78. Lau A, Chen S, Sorrell T, Carter D, Malik R, Martin P, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol 2007;45:380-5.
  79. Hammond SP, Bialek R, Milner DA, Petschnigg EM, Baden LR, Marty FM. Molecular methods to improve diagnosis and identification of mucormycosis. J Clin Microbiol 2011;49:2151-3.
  80. Hrncirova K, Lengerova M, Kocmanova I, Racil Z, Volfova P, Palousova D, et al. Rapid detection and identification of mucormycetes from culture and tissue samples by use of high-resolution melt analysis. J Clin Microbiol 2010;48:3392-4.
  81. Lengerova M, Racil Z, Hrncirova K, Kocmanova I, Volfova P, Ricna D, et al. Rapid detection and identification of mucormycetes in bronchoalveolar lavage samples from immunocompromised patients with pulmonary infiltrates by use of high-resolution melt analysis. J Clin Microbiol 2014;52:2824-8.
  82. Kasai M, Harrington SM, Francesconi A, Petraitis V, Petraitiene R, Beveridge MG, et al. Detection of a molecular biomarker for zygomycetes by quantitative PCR assays of plasma, bronchoalveolar lavage, and lung tissue in a rabbit model of experimental pulmonary zygomycosis. J Clin Microbiol 2008;46:3690-702.
  83. Alanio A, Garcia-Hermoso D, Mercier-Delarue S, Lanternier F, Gits-Muselli M, Menotti J, et al. Molecular identification of Mucorales in human tissues: Contribution of PCR electrospray-ionization mass spectrometry. Clin Microbiol Infect 2015;21:5.e1-5.
  84. Hata DJ, Buckwalter SP, Pritt BS, Roberts GD, Wengenack NL. Real-time PCR method for detection of zygomycetes. J Clin Microbiol 2008;46:2353-8.
  85. Baldin C, Soliman SS, Jeon HH, Alkhazraji S, Gebremariam T, Gu Y, et al. PCR-based approach targeting Mucorales-specific gene family for diagnosis of mucormycosis. J Clin Microbiol 2018;56:e00746-18.
  86. Scherer E, Iriart X, Bellanger AP, Dupont D, Guitard J, Gabriel F, et al. Quantitative PCR (qPCR) detection of Mucorales DNA in bronchoalveolar lavage fluid to diagnose pulmonary mucormycosis. J Clin Microbiol 2018;56:e00289-18.
  87. Shigemura T, Nakazawa Y, Matsuda K, Motobayashi M, Saito S, Koike K. Evaluation of Mucorales DNA load in cerebrospinal fluid in a patient with possible cerebral mucormycosis treated with intravenous liposomal amphotericin B. Int J Infect Dis 2014;29:200-2.
  88. Millon L, Herbrecht R, Grenouillet F, Morio F, Alanio A, Letscher-Bru V, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: Retrospective analysis of 44 cases collected through the French surveillance network of invasive fungal infections (RESSIF). Clin Microbiol Infect 2016;22:810.e1-810.e8.
  89. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis 2013;56:e95-101.
  90. Skiada A, Pavleas I, Drogari-Apiranthitou M. Epidemiology and diagnosis of mucormycosis: An update. J Fungi (Basel) 2020;6:265.
  91. Guegan H, Iriart X, Bougnoux ME, Berry A, Robert-Gangneux F, Gangneux JP. Evaluation of MucorGenius® mucorales PCR assay for the diagnosis of pulmonary mucormycosis. J Infect 2020;81:311-7.
  92. Millon L, Caillot D, Berceanu A, Bretagne S, Lanternier F, Morio F, et al. Evaluation of serum Mucorales polymerase chain reaction (PCR) for the diagnosis of mucormycoses: The MODIMUCOR prospective trial. Clin Infect Dis 2022;75:777-85.
  93. Zhao Y, Park S, Kreiswirth BN, Ginocchio CC, Veyret R, Laayoun A, et al. Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J Clin Microbiol 2009;47:2067-78.
  94. Whole Genome Sequencing and Fungal Disease Outbreaks | Fungal Diseases | CDC. Available from: https://www.cdc.gov/fungal/outbreaks/wgs.html. [Last accessedon 2022 May 19].
  95. Litvintseva AP, Hurst S, Gade L, Frace MA, Hilsabeck R, Schupp JM, et al. Whole-genome analysis of Exserohilum rostratum from an outbreak of fungal meningitis and other infections. J Clin Microbiol 2014;52:3216-22.
  96. Oltean HN, Etienne KA, Roe CC, Gade L, McCotter OZ, Engelthaler DM, et al. Utility of whole-genome sequencing to ascertain locally acquired cases of coccidioidomycosis, Washington, USA. Emerg Infect Dis 2019;25:501-6.
  97. Chow NA, Gade L, Tsay SV, Forsberg K, Greenko JA, Southwick KL, et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect Dis 2018;18:1377-84.
  98. Bain JM, Tavanti A, Davidson AD, Jacobsen MD, Shaw D, Gow NA, et al. Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus. J Clin Microbiol 2007;45:1469-77.
  99. Lee SH, Chen SY, Chien JY, Lee TF, Chen JM, Hsueh PR. Usefulness of the FilmArray meningitis/encephalitis (M/E) panel for the diagnosis of infectious meningitis and encephalitis in Taiwan. J Microbiol Immunol Infect 2019;52:760-8.
  100. Liesman RM, Strasburg AP, Heitman AK, Theel ES, Patel R, Binnicker MJ. Evaluation of a commercial multiplex molecular panel for diagnosis of infectious meningitis and encephalitis. J Clin Microbiol 2018;56:e01927-17.
  101. Charnot-Katsikas A, Tesic V, Love N, Hill B, Bethel C, Boonlayangoor S, et al. Use of the accelerate pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow. J Clin Microbiol 2018;56:e01166-17.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.