Citation Information :
Kumari R, Dhawan B. Role of gene sequencing for the diagnosis, tracking and prevention of bacterial infections. 2022; 24 (S1):8-14.
Gene sequencing is the inevitable future of diagnostic microbiology. Of the various molecular assays available, sequencing is the promising technique for detecting culture-negative infections due to uncultivable bacteria namely culture-negative endocarditis, meningitis, brain abscess, keratitis, urinary tract infections, empyema, septic arthritis and septicaemia. Sequencing also helps to predict full resistance profile of bacteria and its virulence traits. Sequencing is an emerging and powerful technique to perform the epidemiological studies in an outbreak situation. This review focuses on the common applications of sequencing in clinical bacteriology including isolate characterisation, antimicrobial resistance and virulence factor profiling, establishing the source of infections and tracking the disease transmission.
Pallen MJ, Loman NJ, Penn CW. High-throughput sequencing and clinical microbiology: Progress, opportunities and challenges. Curr Opin Microbiol 2010;13:625-31.
Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 2012;13:601-12.
Köser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, Farrington M, et al. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 2012;8:e1002824.
Fricke WF, Rasko DA. Bacterial genome sequencing in the clinic: Bioinformatic challenges and solutions. Nat Rev Genet 2014;15:49-55.
Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, et al. Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 2011;49:2980-4.
Kupferwasser LI, Darius H, Müller AM, Martin C, Mohr-Kahaly S, Erbel R, et al. Diagnosis of culture-negative endocarditis: The role of the duke criteria and the impact of transesophageal echocardiography. Am Heart J 2001;142:146-52.
Goldenberger D, Künzli A, Vogt P, Zbinden R, Altwegg M. Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J Clin Microbiol 1997;35:2733-9.
Wilck MB, Wu Y, Howe JG, Crouch JY, Edberg SC. Endocarditis caused by culture-negative organisms visible by Brown and Brenn staining: Utility of PCR and DNA sequencing for diagnosis. J Clin Microbiol 2001;39:2025-7.
Millar B, Moore J, Mallon P, Xu J, Crowe M, Mcclurg R, et al. Molecular diagnosis of infective endocarditis – A new Duke's criterion. Scand J Infect Dis 2001;33:673-80.
Gauduchon V, Chalabreysse L, Etienne J, Célard M, Benito Y, Lepidi H, et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 2003;41:763-6.
Grijalva M, Horváth R, Dendis M, Erný J, Benedík J. Molecular diagnosis of culture negative infective endocarditis: Clinical validation in a group of surgically treated patients. Heart 2003;89:263-8.
Bosshard PP, Kronenberg A, Zbinden R, Ruef C, Böttger EC, Altwegg M. Etiologic diagnosis of infective endocarditis by broad-range polymerase chain reaction: A 3-year experience. Clin Infect Dis 2003;37:167-72.
Lang S, Watkin RW, Lambert PA, Bonser RS, Littler WA, Elliott TS. Evaluation of PCR in the molecular diagnosis of endocarditis. J Infect 2004;48:269-75.
Lang S, Watkin RW, Lambert PA, Littler WA, Elliott TS. Detection of bacterial DNA in cardiac vegetations by PCR after the completion of antimicrobial treatment for endocarditis. Clin Microbiol Infect 2004;10:579-81.
Breitkopf C, Hammel D, Scheld HH, Peters G, Becker K. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation 2005;111:1415-21.
Houpikian P, Raoult D. Blood culture-negative endocarditis in a reference center: Etiologic diagnosis of 348 cases. Medicine (Baltimore) 2005;84:162-73.
Kotilainen P, Heiro M, Jalava J, Rantakokko V, Nikoskelainen J, Nikkari S, et al. Aetiological diagnosis of infective endocarditis by direct amplification of rRNA genes from surgically removed valve tissue. An 11-year experience in a Finnish teaching hospital. Ann Med 2006;38:263-73.
Cursons RT, Jeyerajah E, Sleigh JW. The use of polymerase chain reaction to detect septicemia in critically ill patients. Crit Care Med 1999;27:937-40.
Sebastian S, Malhotra R, Sreenivas V, Kapil A, Chaudhry R, Dhawan B. A clinico-microbiological study of prosthetic joint infections in an Indian tertiary care hospital: Role of universal 16S rRNA gene polymerase chain reaction and sequencing in diagnosis. Indian J Orthop 2019;53:646-54.
Dempsey KE, Riggio MP, Lennon A, Hannah VE, Ramage G, Allan D, et al. Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 2007;9:R46.
Dhawan B, Sebastian S, Malhotra R, Kapil A, Gautam D. Prosthetic joint infection due to Lysobacter thermophilus diagnosed by 16S rRNA gene sequencing. Indian J Med Microbiol 2016;34:100-2.
Deutch S, Pedersen LN, Püdenphant L, Olesen R, Schmidt MB, Müller JK, et al. Broad-range real time PCR and DNA sequencing for the diagnosis of bacterial meningitis. Scand J Infect Dis 2006;38:27-35.
Welinder-Olsson C, Dotevall L, Hogevik H, Jungnelius R, Trollfors B, Wahl M, et al. Comparison of broad-range bacterial PCR and culture of cerebrospinal fluid for diagnosis of community-acquired bacterial meningitis. Clin Microbiol Infect 2007;13:879-86.
Tsai JC, Teng LJ, Hsueh PR. Direct detection of bacterial pathogens in brain abscesses by polymerase chain reaction amplification and sequencing of partial 16S ribosomal deoxyribonucleic acid fragments. Neurosurgery 2004;55:1154-62.
Knox CM, Cevellos V, Dean D. 16S ribosomal DNA typing for identification of pathogens in patients with bacterial keratitis. J Clin Microbiol 1998;36:3492-6.
Domann E, Hong G, Imirzalioglu C, Turschner S, Kühle J, Watzel C, et al. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J Clin Microbiol 2003;41:5500-10.
Saglani S, Harris KA, Wallis C, Hartley JC. Empyema: The use of broad range 16S rDNA PCR for pathogen detection. Arch Dis Child 2005;90:70-3.
Le Monnier A, Carbonnelle E, Zahar JR, Le Bourgeois M, Abachin E, Quesne G, et al. Microbiological diagnosis of empyema in children: Comparative evaluations by culture, polymerase chain reaction, and pneumococcal antigen detection in pleural fluids. Clin Infect Dis 2006;42:1135-40.
Rosey AL, Abachin E, Quesnes G, Cadilhac C, Pejin Z, Glorion C, et al. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Methods 2007;68:88-93.
Fihman V, Hannouche D, Bousson V, Bardin T, Lioté F, Raskine L, et al. Improved diagnosis specificity in bone and joint infections using molecular techniques. J Infect 2007;55:510-7.
Sleigh J, Cursons R, La Pine M. Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med 2001;27:1269-73.
Xu J, Moore JE, Millar BC, Alexander HD, McClurg R, Morris TC, et al. Improved laboratory diagnosis of bacterial and fungal infections in patients with hematological malignancies using PCR and ribosomal RNA sequence analysis. Leuk Lymphoma 2004;45:1637-41.
Eldholm V, Pettersson JH, Brynildsrud OB, Kitchen A, Rasmussen EM, Lillebaek T, et al. Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2016;113:13881-6.
Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog 2012;8:e1002776.
Coll F, McNerney R, Guerra-Assunção JA, Glynn JR, Perdigão J, Viveiros M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 2014;5:4812.
Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 2013;23:653-64.
Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 2015;6:10063.
Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA, Mukherjee S, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J Antimicrob Chemother 2015;70:2763-9.
Gordon NC, Price JR, Cole K, Everitt R, Morgan M, Finney J, et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J Clin Microbiol 2014;52:1182-91.
Harris KA, Underwood A, Kenna DT, Brooks A, Kavaliunaite E, Kapatai G, et al. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of Mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis 2015;60:1007-16.
Metcalf BJ, Chochua S, Gertz RE Jr., Hawkins PA, Ricaldi J, Li Z, et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA. Clin Microbiol Infect 2017;23:574.e7-574.e14.
Metcalf BJ, Chochua S, Gertz RE Jr, Li Z, Walker H, Tran T, et al. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect 2016;22:1002.e1-1002.e8.
Gonzales RD, Schreckenberger PC, Graham MB, Kelkar S, DenBesten K, Quinn JP. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 2001;357:1179.
Kumari S, Rawre J, Trikha A, Sreenivas V, Sood S, Kapil A, et al. Linezolid-resistant Staphylococcus haemolyticus: Emergence of G2447U & C2534U mutations at the domain V of 23S ribosomal RNA gene in a tertiary care hospital in India. Indian J Med Res 2019;149:795-8.
Ferdous M, Zhou K, de Boer RF, Friedrich AW, Kooistra-Smid AM, Rossen JW. Comprehensive Characterization of Escherichia coli O104:H4 Isolated from Patients in the Netherlands. Front Microbiol 2015;6:1348.
Zhou K, Lokate M, Deurenberg RH, Arends J, Lo-Ten Foe J, Grundmann H, et al. Characterization of a CTX-M-15 Producing Klebsiella Pneumoniae Outbreak Strain Assigned to a Novel Sequence Type (1427). Front Microbiol 2015;6:1250.
Brandt C, Braun SD, Stein C, Slickers P, Ehricht R, Pletz MW, et al. In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. Sci Rep 2017;7:43232.
Durão P, Balbontín R, Gordo I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol 2018;26:677-91.
San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 2016;1:10.
Björkholm B, Sjölund M, Falk PG, Berg OG, Engstrand L, Andersson DI. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A 2001;98:14607-12.
Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, et al. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci U S A 2005;102:541-6.
MacLean RC, Perron GG, Gardner A. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa. Genetics 2010;186:1345-54.
Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science 2016;353:1147-51.
Klinkenberg D, Backer JA, Didelot X, Colijn C, Wallinga J. Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks. PLoS Comput Biol 2017;13:e1005495.
Eldholm V, Rieux A, Monteserin J, Lopez JM, Palmero D, Lopez B, et al. Impact of HIV co-infection on the evolution and transmission of multidrug-resistant tuberculosis. Elife 2016;5:e16644.
Didelot X, Gardy J, Colijn C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 2014;31:1869-79.
Didelot X, Eyre DW, Cule M, Ip CL, Ansari MA, Griffiths D, et al. Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 2012;13:R118.
Raza S, Kim J, Sadowsky MJ, Unno T. Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021;59:259-69.
Yang S, Hemarajata P, Hindler J, Li F, Adisetiyo H, Aldrovandi G, et al. Evolution and transmission of Carbapenem-Resistant Klebsiella pneumoniae expressing the blaOXA-232 Gene During an Institutional Outbreak Associated With Endoscopic RetrogradeCholangiopancreatography. Clin Infect Dis 2017;64:894-901.
Fitzpatrick MA, Ozer EA, Hauser AR. Utility of whole-genome sequencing in characterizing Acinetobacter epidemiology and analyzing hospital outbreaks. J Clin Microbiol 2016;54:593-612.
Köser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, et al. Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 2012;366:2267-75.
Kong Z, Zhao P, Liu H, Yu X, Qin Y, Su Z, et al. Whole-Genome sequencing for the investigation of a hospital outbreak of MRSA in China. PLoS One 2016;11:e0149844.
Nanduri SA, Metcalf BJ, Arwady MA, Edens C, Lavin MA, Morgan J, et al. Prolonged and large outbreak of invasive group A Streptococcus disease within a nursing home: Repeated intrafacility transmission of a single strain. Clin Microbiol Infect 2019;25:248.e1-248.e7.
Didelot X, Dordel J, Whittles LK, Collins C, Bilek N, Bishop CJ, et al. Genomic analysis and comparison of two gonorrhea outbreaks. mBio 2016;7:e00525-16.
Didelot X, Fraser C, Gardy J, Colijn C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol Biol Evol 2017;34:997-1007.
Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC. Antimicrob Agents Chemother 2016;60:3767-78.
Aarestrup F, Allerberger F, Carriço JA, Balode A, Besser J. European centre for disease prevention and control. Expert opinion on whole genome sequencing for public health surveillance. Stockholm: ECDC; 2016.
Zhou K, Lokate M, Deurenberg RH, Tepper M, Arends JP, Raangs EG, et al. Use of whole-genome sequencing to trace, control and characterize the regional expansion of extended-spectrum β-lactamase producing ST15 Klebsiella pneumoniae. Sci Rep 2016;6:20840.
Weterings V, Zhou K, Rossen JW, van Stenis D, Thewessen E, Kluytmans J, et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis 2015;34:1647-55.