Citation Information :
Sinha KK, Singh PK, Singh U, Dixit P, Jain A. Occurrence and diversity of non-tuberculous mycobacteria among suspected and confirmed cases of pulmonary tuberculosis. 2020; 22 (1):12-16.
BACKGROUND: Non-tuberculous mycobacteria (NTM) may cause pulmonary disease that resembles tuberculosis (TB) and it may also coexist with Mycobacterium tuberculosis. Here, we aimed to study the occurrence and diversity of NTM among suspected and confirmed cases of TB.
METHODS: During 2017–2018, we received 11,094 sputum samples, of which 4288 samples were from equal number of presumptive TB patients. The rest of 6866 samples were from known multidrug-resistant TB patients and at different months of treatment follow-up. All samples were subjected to liquid culture and recovered isolates were identified as M. tuberculosis complex (MTBC) or NTM based on microscopy and immunochromatograhic (MPT-64Ag) tests. NTM isolates were further speciated using commercial GenoType® Mycobacterium CM assay.
RESULTS: A total of 2782 culture isolates were recovered, of which 2722 were MTBC and the rest 60 were considered as NTM. NTM was isolated both from presumptive and confirmed TB cases. NTM speciation could be achieved for 42 isolates; Mycobacterium intracellulare (50%) was identified as the most prevalent species, followed by Mycobacterium abscessus (23.8%), Mycobacterium fortuitum (16.7%) and others (9.5%).
CONCLUSION: The proportion of NTM isolation among suspected/confirmed cases of pulmonary TB is low; however, if isolated, patients should be carefully evaluated for possible NTM disease. Molecular speciation of NTM is useful to provide rapid and precise diagnosis.
Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis 2016;45:123-34.
Shahraki AH, Heidarieh P, Bostanabad SZ, Khosravi AD, Hashemzadeh M, Khandan S, et al. “Multidrug-resistant tuberculosis” may be nontuberculous mycobacteria. Eur J Intern Med 2015;26:279-84.
Chiang CY, Yu MC, Yang SL, Yen MY, Bai KJ. Surveillance of tuberculosis in Taipei: The influence of Nontuberculous mycobacteria. PLoS One 2015;10:e0142324.
Damaraju D, Jamieson F, Chedore P, Marras TK. Isolation of non-tuberculous mycobacteria among patients with pulmonary tuberculosis in Ontario, Canada. Int J Tuberc Lung Dis 2013;17:676-81.
Sonnenberg P, Murray J, Glynn JR, Thomas RG, Godfrey-Faussett P, Shearer S. Risk factors for pulmonary disease due to culture-positive M. tuberculosis or nontuberculous mycobacteria in South African gold miners. Eur Respir J 2000;15:291-6.
Hsing SC, Weng SF, Cheng KC, Shieh JM, Chen CH, Chiang SR, et al. Increased risk of pulmonary tuberculosis in patients with previous non-tuberculous mycobacterial disease. Int J Tuberc Lung Dis 2013;17:928-33.
Kent PT, Kubica GP. Public Health Mycobacteriology. A Guide for the Level III Laboratory. Atlanta, GA, USA: US Department Health and Human Services, Center for Disease Control; 1985.
Siddiqi SH, Rusch-Gerdes S. MGITTM Procedure Manual 2006. Geneva, Switzerland: Foundation for Innovative New Diagnostics; 2006.
Maiga M, Siddiqui S, Diallo S, Diarra B, Traoré B, Shea YR, et al. Failure to recognize nontuberculous mycobacteria leads to misdiagnosis of chronic pulmonary tuberculosis. PLoS One 2012;7:e36902.
Aliyu G, El-Kamary SS, Abimiku A, Brown C, Tracy K, Hungerford L, et al. Prevalence of non-tuberculous mycobacterial infections among tuberculosis suspects in Nigeria. PLoS One 2013;8:e63170.
Asiimwe BB, Bagyenzi GB, Ssengooba W, Mumbowa F, Mboowa G, Wajja A, et al. Species and genotypic diversity of non-tuberculous mycobacteria isolated from children investigated for pulmonary tuberculosis in rural Uganda. BMC Infect Dis 2013;13:88.
Gopinath K, Singh S, Phillips RO. Non-tuberculous mycobacteria in TB endemic countries: Are we neglecting the danger? PLoS Negl Trop Dis 2010;4:e615-.
Jun HJ, Jeon K, Um SW, Kwon OJ, Lee NY, Koh WJ. Nontuberculous mycobacteria isolated during the treatment of pulmonary tuberculosis. Respir Med 2009;103:1936-40.
Huang CT, Tsai YJ, Shu CC, Lei YC, Wang JY, Yu CJ et al. Clinical significance of isolation of non-tuberculous mycobacteria in pulmonary tuberculosis patients. Respir Med 2009;103:1484-91.
Kendall BA, Varley CD, Hedberg K, Cassidy PM, Winthrop KL. Isolation of non-tuberculous mycobacteria from the sputum of patients with active tuberculosis. Int J Tuberc Lung Dis 2010;14:654-6.
Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: Status, gaps and the way forward. Drug Discov Today 2018;23:1502-19.
Izadi N, Derakhshan M, Samiei A, Ghazvini K. Co-infection of long-standing extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) and non-tuberculosis mycobacteria: A case report. Respir Med Case Rep 2015;15:12-3.
Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 1998;177:1573-81.
Nessar R, Reyrat JM, Murray A, Gicquel B. Genetic analysis of new 16S rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus. J Antimicrob Chemother 2011;66:1719-24.
Egelund EF, Fennelly KP, Peloquin CA. Medications and monitoring in nontuberculous mycobacteria infections. Clin Chest Med 2015;36:55-66.
Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007;175:367-416.
Kim SY, Han S, Kim DH, Koh WJ, Kim SY, Han SA, et al. Nontuberculous mycobacterial lung disease: Ecology, microbiology, pathogenesis, and antibiotic resistance mechanisms. Precision Future Med 2017;1:99-114.
Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: Molecular versus phenotypic methods. J Clin Microbiol 1996;34:296-303.
Adékambi T, Drancourt M. Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 2004;54:2095-105.
Huang TS, Lee CC, Tu HZ, Lee SS. Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry. PLoS One 2018;13:e0192291.
Singh AK, Maurya AK, Umrao J, Kant S, Kushwaha RA, Nag VL, et al. Role of GenoType(®) Mycobacterium common mycobacteria/additional Species assay for rapid differentiation between Mycobacterium tuberculosis complex and different species of non-tuberculous mycobacteria. J Lab Physicians 2013;5:83-9.
Shenai S, Rodrigues C, Mehta A. Time to identify and define non-tuberculous mycobacteria in a tuberculosis-endemic region. Int J Tuberc Lung Dis 2010;14:1001-8.
Maurya AK, Nag VL, Kant S, Kushwaha RA, Kumar M, Singh AK, et al. Prevalence of nontuberculous mycobacteria among extrapulmonary tuberculosis cases in tertiary care centers in Northern India. Biomed Res Int 2015;2015/465403:1-5.
Russo C, Tortoli E, Menichella D. Evaluation of the newGenoType Mycobacterium assay for identification of mycobacterialspecies. J Clin Microbiol 2006;44:3349.
Somoskovi A, Mester J, Hale YM, Parsons LM, Salfinger M. Laboratory diagnosis of nontuberculous mycobacteria. Clin Chest Med 2002;23:585-97.
Tortoli E, Bartoloni A, Böttger EC, Emler S, Garzelli C, Magliano E, et al. Burden of unidentifiable mycobacteria in a reference laboratory. J Clin Microbiol 2001;39:4058-65.