Citation Information :
Selvan M, Deepashree R, Bhat P, Akshatha R, Jayakar S, Sastry A S. Appropriateness of antimicrobial therapy for culture-proven blood stream infections. 2019; 21 (1):16-23.
INTRODUCTION: Blood stream infections (BSIs) are responsible for significant morbidity and mortality. Numerous studies have pointed to the importance of early and prompt institution of empirical antimicrobial therapy in reducing morbidity and mortality in BSI. The antibiotic spectrum must be narrowed as soon as possible, considering the clinical condition of the patient, the pathogens identified in cultures and the sensitivity profile obtained from the antibiogram. When no evidence of bacterial infection is present, antibiotic therapy must be suspended. However, it is often observed that the clinician does not adhere to the guideline and continues with the same empirical treatment.
MATERIALS AND METHODS: The study was conducted at Department of Microbiology, in a tertiary care hospital from April 2017 to September 2017. Two hundred patients with microbiologically documented BSIs were included in the study. They were followed up to find the appropriateness of change in empirical treatment carried out according to culture sensitivity report, and antimicrobial consumption was also calculated.
RESULTS: We observed that there was an increased use of antipseudomonal penicillins plus beta-lactamase inhibitors, amikacin and carbapenems which was due to higher prevalence of multidrug-resistant Gram-negative bacilli among blood culture isolated. We also found that in most of the patients, the empirical treatment was inappropriately modified at day four after availability of culture reports, i.e., inappropriately escalated or de-escalated or continued while there was no indication to do so.
CONCLUSION: Treatment inappropriate group was associated with higher treatment failure as compared to treatment appropriate group. Studies of the other factors associated with inappropriate treatment such as changes in resistance patterns, antimicrobial-related adverse effect and of the long-term clinical outcomes are warranted.
Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect 2015;6:22-9.
Walia K, Ohri VC, Mathai D; Antimicrobial Stewardship Programme of ICMR. Antimicrobial stewardship programme (AMSP) practices in India. Indian J Med Res 2015;142:130-8.
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017;45:486-552.
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315:801-10.
Annamallaei S, Bhat KS. Correlation of empiric antibiotic use with susceptibility pattern of blood isolates in septicemic patients in an Intensive Care Unit. J Curr Res Sci Med 2017;3:29-35.
Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernández-Delgado E, Herrera-Melero I, et al. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 2014;40:32-40.
Yamana H, Matsui H, Tagami T, Hirashima J, Fushimi K, Yasunaga H. De-escalation versus continuation of empirical antimicrobial therapy in community-acquired pneumonia. J Infect 2016;73:314-25.
Paul M, Dickstein Y, Raz-Pasteur A. Antibiotic de-escalation for bloodstream infections and pneumonia: Systematic review and meta-analysis. Clin Microbiol Infect 2016;22:960-7.
Braykov NP, Morgan DJ, Schweizer ML, Uslan DZ, Kelesidis T, Weisenberg SA, et al. Assessment of empirical antibiotic therapy optimisation in six hospitals: An observational cohort study. Lancet Infect Dis 2014;14:1220-7.
Available from: http://www.who.int/foodsafety/publications/cia2017.pdf?ua=1. [Last accessed on 2017 Oct 12].
Pandey S, Raza S, Bhatta CP. The aetiology of the bloodstream infections in the patients who presented to a tertiary care teaching hospital in Kathmandu, Nepal. J Clin Diagn Res 2013;7:638-41.
Parajuli NP, Parajuli H, Pandit R, Shakya J, Khanal PR. Evaluating the trends of bloodstream infections among pediatric and adult patients at a teaching hospital of Kathmandu, Nepal: Role of drug resistant pathogens. Can J Infect Dis Med Microbiol 2017;2017:8763135.
Lueangarun S, Leelarasamee A. Impact of inappropriate empiric antimicrobial therapy on mortality of septic patients with bacteremia: A retrospective study. Interdiscip Perspect Infect Dis 2012;2012:765205.
Mehta M, Dutta P, Gupta V. Antimicrobial susceptibility pattern of blood isolates from a teaching hospital in North India. Jpn J Infect Dis 2005;58:174-6.
Available from: http://www.jcdr.net/articles/PDF/9247/23717_CE[Ra1]_F[DK]_PF1[P_RK]_PFA[P]_PF2[AG_OM].pdf. [Last accessed on 2017 Oct 13].
Moolchandani K, Sastry AS, Deepashree R, Sistla S, Harish BN, Mandal J. Antimicrobial resistance surveillance among intensive care units of a tertiary care hospital in Southern India. J Clin Diagn Res 2017;11:DC01-7.
Shime N, Kosaka T, Fujita N. De-escalation of antimicrobial therapy for bacteraemia due to difficult-to-treat gram-negative bacilli. Infection 2013;41:203-10.