Cepheid GeneXpert Mycobacterium tuberculosis/Rifampicin assay for the rapid detection of Mycobacterium tuberculosis and identification of Rifampicin resistance
MK Anand, KB Jnaneshwara, Asha B Patil, MY Balakrishna Naidu
Citation Information :
Anand M, Jnaneshwara K, Patil AB, Naidu MB. Cepheid GeneXpert Mycobacterium tuberculosis/Rifampicin assay for the rapid detection of Mycobacterium tuberculosis and identification of Rifampicin resistance. 2018; 20 (2):84-87.
CONTEXT: Rapid diagnosis and detection of Rifampicin (RIF) resistance are essential for effective disease management of tuberculosis (TB). Cartridge-based nucleic acid amplification test also known as GeneXpert Mycobacterium tuberculosis (MTB)/RIF assay is a novel integrated diagnostic system for the diagnosis of TB and rapid detection of RIF resistance in clinical specimens.
AIM: In the present study, we determine the performance of the MTB/RIF assay for the rapid diagnosis of TB and detection of RIF resistance in pulmonary specimens obtained from presumptive multidrug-resistant (MDR) TB cases.
SUBJECTS AND METHODS: This is a cross-sectional observational study conducted in culture and drug-susceptibility testing laboratory between January 2014 and December 2014. A total of 1994 sputum samples were obtained from presumptive MDR-TB cases of Dharwad and Belgaum districts of Karnataka. All samples were tested on GeneXpert for MTB/RIF detection.
RESULTS: A total of 1994 presumptive pulmonary TB clinical samples were received of which 840 (42.1%) were MTB complex (MTBC) positive and 1154 (57.9%) were negative. The MTB/RIF assay also detected 127 (6.4%) RIF-resistant specimen and 713 (35.6%) RIF-susceptible specimens.
CONCLUSIONS: The MTB/RIF test is a simple and rapid method, and staff with adequate training can perform this test with minimal laboratory setup. It helps to avoid the injudicious use of the anti-TB drug and offers high potential for the diagnosis of TB and RIF resistance due to its capacity for direct detection of MTBC, its rapidity and its simplicity.
World Health Organization. Global Tuberculosis Report 2014. WHO/HTM/TB/2014.08. Geneva, Switzerland: World Health Organization. Available from: http://www.who.int/tb/publications/global_report/gtbr14_main_text.pdf. [Last accessed on 2015 Sep 10].
Mathew P, Kuo YH, Vazirani B, Eng RH, Weinstein MP. Are three sputum acid-fast bacillus smears necessary for discontinuing tuberculosis isolation? J Clin Microbiol 2002;40:3482-4.
Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W. Xpert(®) MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: Hype or hope? Expert Rev Mol Diagn 2010;10:937-46.
Pai M, Minion J, Sohn H, Zwerling A, Perkins MD. Novel and improved technologies for tuberculosis diagnosis: Progress and challenges. Clin Chest Med 2009;30:701-16, viii.
Van Rie A, Mellet K, John MA, Scott L, Page-Shipp L, Dansey H, et al. False-positive rifampicin resistance on xpert® MTB/RIF: Case report and clinical implications. Int J Tuberc Lung Dis 2012;16:206-8.
Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010;363:1005-15.
Greco S, Rulli M, Girardi E, Piersimoni C, Saltini C. Diagnostic accuracy of in-house PCR for pulmonary tuberculosis in smear-positive patients: Meta-analysis and meta regression. J Clin Microbiol 2009;47:569-76.
Joydeep G, Souvik R, Saumen N, Subhadip H, Soumya K, Abhijit M. A study to evaluate pattern of rifampicin resistance in cases of sputum positive pulmonary tuberculosis. J Evol Med Dent Sci 2015;28:4762-8.
Sowjanya DS, Ganeswar B, Ramana Reddy VV, Praveen JV. CBNAAT: A novel diagnostic tool for rapid and specific detection of Mycobacterium tuberculosis in pulmonary samples. Int J Health Res Mod Integr Med Sci 2014;4:28-31.
Sowjanya DS, Ganeswar B, Ramana Reddy VV, Praveen JV. CBNAAT: A novel diagnostic tool for rapid and specific detection of mycobacterium tuberculosis in pulmonary samples. Int J Health Res Mod Integrated Med Sci 2014;4:28-31.
Malhotra B, Pathak S, Vyas L, Katoch VM, Srivastava K, Chauhan DS, et al. Drug susceptibility profiles of Mycobacterium tuberculosis isolates at Jaipur. Indian J Med Microbiol 2002;20:76-8.
Trivedi SS, Desai SG. Primary antituberculosis drug resistance and acquired rifampicin resistance in Gujarat, India. Tubercle 1988;69:37-42.
Chowgule RV, Deodhar L. Pattern of secondary acquired drug resistance to antituberculosis drug in Mumbai, India–1991-1995. Indian J Chest Dis Allied Sci 1998;40:23-31.
Bodmer T, Ströhle A. Diagnosing pulmonary tuberculosis with the xpert MTB/RIF test. J Vis Exp 2012;9:e3547.
Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N, et al. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 2014;21:CD009593.
Stop TB Department WHO. Roadmap for Rolling out Xpert MTB/RIF for Rapid Diagnosis of Tuberculosis and MDR-Tuberculosis. Available from: http://www.who.int/tb/laboratory/roadmap_xpert_mtb-rif.pdf. [Last accessed on 2015 Jul 28].