Occurrence of extended-spectrum beta-lactamase, AmpC and MBLase producers among multidrug-resistant Enterobacteriaceae causing urinary tract infection in a tertiary health-care teaching hospital
Citation Information :
Madhavan A, Jayalakshmi V. Occurrence of extended-spectrum beta-lactamase, AmpC and MBLase producers among multidrug-resistant Enterobacteriaceae causing urinary tract infection in a tertiary health-care teaching hospital. 2016; 18 (2):80-85.
Introduction: Emerging multidrug resistance continues to be a major concern in healthcare settings. The aim of the study was to determine the resistance pattern of multidrug-resistant (MDR) Enterobacteriaceae causing urinary tract infections in our hospital and to report the occurrence of extended-spectrum beta-lactamase (ESBL), AmpC and metallo-beta-lactamase (MBL) production in them.
Materials and Methods: Out of 280 MDR strains collected over a period of one year, 130 strains of Escherichia coli (96), Klebsiella spp. (31) and Enterobacter spp. (3) resistant to the second- and third-generation Cephalosporins were selected for further testing. Cefotaxime, Cefotaxime-Clavulanic acid, Ceftazidime, Ceftazidime-Clavulanic acid and Cefepime, Cefepime-Clavulanic acid Etest strips, Cefoxitin and Cefotetan with Boronic acid and Imipenem/Imipenem-EDTA Etest strips were used to detect ESBLs, AmpC and MBLs. Multiplex polymerase chain reaction (PCR) was done to detect plasmid-mediated AmpC genes.
Results: Among 130 Cefoxitin-resistant strains, Cefoxitin-Boronic acid inhibitor method detected AmpC phenotype in 116 (89.2%) isolates. The overall occurrence of AmpC (n = 280) was 116 (41.42%). 92 (32.8%) isolates were found to be ESBL producers by the Clinical and Laboratory Standards Institute confirmatory method. ESBL production was detected in 107 (38.2%) more isolates by Cefepime/Cefepime-Clavulanic acid Etest. MBL producers were relatively low in our study 5 (1.8%). PCR detected CIT genotype (CMY-2) in 13 isolates (4.6%).
Conclusion: This study reveals high prevalence of AmpC and ESBL co-carriage suggesting plasmid-mediated spread, indicates the need for surveillance of resistance mechanisms and takes necessary measures to control the emergence of MDR organisms.
Kolawole AS, Kolawole OM, Kandak-Olukemi YT, Babatunde SK, Durowade KA. Prevalence of UTI among patients attending Dalhatu Araf Speciality Hospital, Lafia, Nasarawa State, Nigeria. Int J Med Med Sci 2009;1:163-7.
Farrell DJ, Morrissey I, De Rubeis D, Robbins M, Felmingham D. A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect 2003;46:94-100.
Michael I, Wilson ML, Gaido L. Laboratory diagnosis of UTI in adult patients. Clin Infent Dis 2004;38:1150-8.
Alvarez M, Tran JH, Chow N, Jacoby GA. Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrob Agents Chemother 2004;48:533-7.
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Anti Microbial Susceptibility Testing, 19 th Informational Supplement, CLSI Document M 100-S19. Vol. 29. Wayne, PA: Clinical and Laboratory Standards Institute; 2009.
Thabit AG, El-khamissy TR, Ibeahim MA, Attia AE. Detection of ESBLS produced by E. coli urinary pathogens at Assiut University Hospital. Bull Pharm Sci Assiut Univ 2011;34:93-103.
Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp. Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43:4163-7.
Hemalatha V, Padma M, Sekar U, Vinodh TM, Arunkumar AS. Detection of AmpC beta lactamases production in Escherichia coli and Klebsiella by an inhibitor based method. Indian J Med Res 2007;126:220-3.
Cheesbrough M. District Laboratory Practice in Tropical Countries. Part II. Cambridge university press; 2010. p. 55-6, 132-43, 178-82.
Mohanty S, Gaind R, Ranjan R, Deb M. Use of the cefepime-clavulanate ESBL Etest for detection of extended-spectrum beta-lactamases in AmpC co-producing bacteria. J Infect Dev Ctries 2009;4:24-9.
Pérez-Pérez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 2002;40:2153-62.
Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D, Khilnani GC, et al. Phenotypic & molecular characterization of AmpC ß-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian J Med Res 2012;135:359-64.
Thomson KS, Sanders CC. Detection of extended-spectrum beta-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three-dimensional tests. Antimicrob Agents Chemother 1992;36:1877-82.
Pitout JD, Reisbig MD, Venter EC, Church DL, Hanson ND. Modification of the double-disk test for detection of Enterobacteriaceae producing extended-spectrum and AmpC beta-lactamases. J Clin Microbiol 2003;41:3933-5.
Singhal S, Mathur T, Khan S, Upadhyay DJ, Chugh S, Gaind R, et al. Evaluation of methods for AmpC beta-lactamase in Gram-negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 2005;23:120-4.
Manchanda V, Singh NP. Occurrence and detection of AmpC beta-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J Antimicrob Chemother 2003;51:415-8.
Ratna AK, Menon I, Kapur I, Kulkarni R. Occurrence & detection of AmpC beta-lactamases at a referral hospital in Karnataka. Indian J Med Res 2003;118:29-32.
Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM, Simor AE, et al. Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 2005;49:358-65.
Devaraju AD, Ramachander R. Occurrence of various beta lactamase enzyme producing Enterobacteriaceae in the hospital effluent - A wake up call. Int J Med Sci Public Health 2016;5:(6).
Nasir KM, Preeti S, Vikili C, Singh NP. Prevalence of ESBL and AmpC betalactamases in gram negative bacteria in various clinical samples at a tertiary care hospital. Int Res J Med Sci 2015;3:1-6.